
2.2 Fracture Mechanics Fundamentals 
Fracture Mechanics is that technology concerned with the modeling of cracking phenomena.  
Bulk (smooth specimen) properties are not normally useful in design for determining a material’s 
tolerance to cracks or crack-like defects, because material tolerance to flaws resides in a 
material’s ability to deform locally.  Since the source of fractures can be identified with the lack 
of material tolerance to cracks, it seems only natural that attention should be focused on the 
crack tip region where the material must resist crack extension.  This section will introduce the 
principal features of a mechanical model that characterizes a crack movement in structural 
components fabricated from materials having low tolerance to flaws. 

Some basic information that a designer should be familiar with prior to the utilization of 
remaining sections of this handbook is presented.  This subsection will define the meaning and 
use of the fracture mechanics model for the control of fracture and sub-critical crack growth 
processes. 

The application of a fracture mechanics model to solve crack problems came about through the 
following realization: component fractures that result from the extension of small crack-like 
defects are failures that depend on localized phenomena.  Consider the three independent modes 
of crack extension that are illustrated in Figure 2.2.1.  The tensile opening mode, Mode 1, 
represents the principal action observed and this is the type of separation that we design against.  
While fractures induced by shear stresses can occur, these fractures are rather infrequent.  There 
are hypotheses available for describing the combined influence of two (or three) modes of crack 
extension but these will not be discussed until Section 4.  In general, since improvement of a 
material’s Mode 1 fracture resistance will also improve the resistance to the combined mode 
action, the development of concepts throughout the Handbook will emphasize Mode 1 crack 
extension behavior. 

 

 

Figure 2.2.1.  The Three Modes of Crack Extension 
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A linear elastic analysis of a cracked body provides a good first approximation to the localized 
stress state in materials that fracture at gross section stresses below the yield strength.  No 
additional refinements in the analysis are necessary if the gross section stresses at failure are 
below 0.7σys.  The elastic analysis when modified to account for restricted amounts of stress 
relaxation due to crack tip plastic deformation provides an adequate description of fracture that 
occurs above 0.7σys. 

2.2.1 Stress Intensity Factor – What It Is 
The model referred to above is called the linear elastic fracture mechanics model and has found 
wide acceptance as a method for determining the resistance of a material to below-yield strength 
fractures.  The model is based on the use of linear elastic stress analysis; therefore, in using the 
model one implicitly assumes that at the initiation of fracture any localized plastic deformation is 
small and considered within the surrounding elastic stress field.  Application of linear elastic 
stress analysis tools to cracks of the type shown in Figure 2.2.2 shows that the local stress field 
(within r < a/10) is given by [Irwin, 1957; Williams, 1957; Sneddon & Lowengrub, 1969; Rice, 
1968a]: 
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The stress in the third direction are given by σz = σxz = σyz = 0 for the plane stress problem, and 
when the third directional strains are zero (plane strain problem), the out of plane stresses 
become σxz = σyz = 0 and σz = ν (σx + σy).  While the geometry and loading of a component may 
change, as long as the crack opens in a direction normal to the crack path, the crack tip stresses 
are found to be as given by Equations 2.2.1.  Thus, the Equations 2.2.1 only represent the crack 
tip stress field for the Mode 1 crack extension described by Figure 2.2.2. 
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Figure 2.2.2.  Infinite Plate with a Flaw that Extends Through Thickness 

Three variables appear in the stress field equation:  the crack tip polar coordinates r and θ and 
the parameter K.  The functions of the coordinates determine how the stresses vary with distance 
from the right hand crack tip (point B) and with angular displacement from the x-axis.  As the 
stress element is moved closer to the crack tip, the stresses are seen to become infinite.  
Mathematically speaking, the stresses are said to have a square root singularity in r.  Because 
most cracks have the same geometrical shape at their tip, the square root singularity in r is a 
general feature of most crack problem solutions. 

The parameter K, which occurs in all three stresses, is called the stress intensity factor because its 
magnitude determines the intensity or magnitude of the stresses in the crack tip region.  The 
influence of external variables, i.e. magnitude and method of loading and the geometry of the 
cracked body, is sensed in the crack tip region only through the stress intensity factor.  Because 
the dependence of the stresses (Equation 2.2.1) on the coordinate variables remain the same for 
different types of cracks and shaped bodies, the stress intensity factor is a single parameter 
characterization of the crack tip stress field. 

The stress intensity factors for each geometry can be described using the general form: 

aK πσβ=  (2.2.2)

where the factor β is used to relate gross geometrical features to the stress intensity factors.  Note 
that β can be a function of crack length (a) as well as other geometrical features 
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It is seen from Equation 2.2.2 that the intensity of the stress field and hence the stresses in the 
crack tip region are linearly proportional to the remotely applied stress and proportional to the 
square root of the half crack length. 

A structural analyst should be able to determine analytically, numerically, or experimentally the 
stress-intensity factor relationship for almost any conceivable cracked body geometry and 
loading.  The analysis for stress-intensity factors, however, is not always straightforward and 
information for determining this important structural property will be presented subsequently in 
Section 11.  A mini-handbook of stress-intensity factors and some methods for approximating 
stress-intensity factors are also presented in Section 11. 

2.2.2 Application to Fracture 
Can the magnitude or intensity of this crack tip pattern be used to characterize the material 
instability at fracture?  The formulation of such a hypothesis for measuring a material’s 
resistance to fracture was developed by G.R. Irwin and his co-workers at the Naval Research 
Laboratories in the 1950’s [Irwin, 1957; Irwin & Kies, 1954; Irwin, et al., 1958]. 

The hypothesis can be stated: 

if the level of crack tip stress intensity factor exceeds a critical value, unstable fracture 
will occur.   

The concept is analogous to the criterion of stress at a point reaching a critical value such as the 
yield strength.  The value of the stress-intensity factor at which unstable crack propagation 
occurs is called the fracture toughness and is given the symbol Kc.  In equation form, the 
hypothesis states: 

if K = Kc, (2.2.3)
then catastrophic crack extension (fracture) occurs. 

To verify the usefulness of the proposed hypothesis, consider the results of a wide plate fracture 
study given in Figure 2.2.3 [Boeing, 1962].  These data represent values of half crack length and 
gross section stress at fracture.  The stress-intensity factor for the uniformly-loaded center-
cracked finite-width panel is given by: 
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where W is the panel width.  Application of Equation 2.2.4 given in Figure 2.2.3 followed by 
averaging the calculated fracture toughness values (except for those at the two smallest crack 
lengths) gives the average fracture toughness curve shown.  This example illustrates that the 
fracture toughness concept can be used to adequately describe fractures that initiate at gross 
sectional stress below 70% of the yield strength. 
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Figure 2.2.3.  Results of a Wide Plate Fracture Study Compared with a Fracture Toughness 

Curve Calculated Using the Finite Width Plate Stress Intensity Factor Equation, Equation 2.2.4 
(Data from Boeing [1962]) 

Note that since plastic deformation is assumed negligible in the linear elastic analysis, Equation 
2.2.3 is not expected to yield an accurate approximation where the zone of plastic deformation is 
large compared to the crack length and specimen dimensions.  Figure 2.2.3 shows that the 
relationship derived on the basis of the Equation 2.2.3 hypothesis does not describe the crack 
growth behavior for small cracks in plastic stress fields. 

2.2.3 Fracture Toughness - A Material Property 
Fracture toughness (Kc) is a mechanical property that measures a material’s resistance to 
fracture.  This parameter characterizes the intensity of stress field in the material local to the 
crack tip when rapid crack extension takes place.  Similar to other microstructurally sensitive 
material properties, fracture toughness can vary as a function of temperature and strain rate.  But, 
unlike the yield strength, Kc will be strongly dependent on the amount of crack tip constraint due 
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to component thickness.  The reason why thickness has to be considered in fracture analysis is 
due to its influence on the pattern of crack tip plastic deformation.  The two thickness limiting 
crack tip plastic deformation patterns are shown in Figure 2.2.4.  For “thin” plane stress type 
components, a 45 degree through the thickness yielding pattern develops; in “thicker” plane 
strain components of the same material, the hinge-type plastic deformation pattern predominates 
[Hahn, & Rosenfield, 1965].  Section 4 and 7 discuss the effect of thickness and other factors on 
fracture toughness. 

 
Figure 2.2.4.  Yield Zone Observed on the Surface and Cross Section of a Cracked Sheet Under 
Uni-axial Tensile Loading in: A-Plane Stress, 45 degree Shear Type; B-Plane Strain, Hinge Type 

The linear elastic fracture mechanics approach can only be expected to characterize fracture 
when the region in which plastic deformation occurs is contained within the elastic crack tip 
stress field.  When the crack tip plastic deformation is unrestricted by elastic material around the 
crack, the engineer must resort to using elasto-plastic techniques to predict the critical crack size 
at fracture.  Presently, it is not possible to say if these techniques will lead to the same type of 
single parameter characterization of fracture discussed above. 
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2.2.4 Crack Tip Plastic Zone Size 

It is recognized that plastic deformation will occur at the crack tip as a result of the high stresses 
that are generated by the sharp stress concentration.  To estimate the extent of this plastic 
deformation, Irwin equated the yield strength to the y-direction stress along the x-axis and solved 
for the radius.  The radius value determined was the distance along the x-axis where the stress 
perpendicular to the crack direction would equal the yield strength; thus, Irwin found that the 
extent of plastic deformation was  
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Subsequent investigations have shown that the stresses within the crack tip region are lower than 
the elastic stresses and that the size of the plastic deformation zone in advance of the crack is 
between ry and 2ry.  Models of an elastic, perfectly plastic material have shown that the material 
outside the plastic zone is stressed as if the crack were centered in the plastic zone.  Figure 2.2.5 
describes a schematic model of the plastic zone and the stresses ahead of the crack tip.  Note that 
the real crack is blunted as a result of plastic deformation. 

 
Figure 2.2.5.  Small-Scale Yield Model for Restricted Crack Tip Plastic Deformation 
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If the extent of the plastic zone as estimated by Equation 2.2.5 is small with respect to features of 
the structural geometry and to the physical length of the crack, linear elastic fracture mechanics 
analyses apply.  Sometimes, the concept of contained yielding, as illustrated in Figure 2.2.5, is 
referred to as small scale yielding.  Most structural problems of interest to the aerospace 
community can be characterized by linear elastic fracture mechanics parameters because the 
extent of yielding is contained within a small region around the crack tip. 

2.2.5 Application to Sub-critical Crack Growth 
The only quantifiable measure of sub-critical damage is a crack.  Cracks impair the load-carrying 
characteristics of a structure.  As described above, a crack can be characterized for length and 
configuration using a structural parameter termed the stress intensity factor (K).  This structural 
parameter was shown to interrelate the local stresses in the region of the crack with crack 
geometry, structural geometry, and level of load on the structure.  In a manner similar to Irwin, 
who utilized the stress intensity factor for fracture studies, Paris and his colleagues at Lehigh 
University and at the Boeing Company developed a crack mechanics approach to solve sub-
critical crack growth problems [Paris, et al., 1961; Donaldson & Anderson, 1961; Paris, 1964]. 

The concepts that Paris and his colleagues developed were based upon a similitude hypothesis:  
if the crack tip stress state and its waveform are the same in a given time period for two separate 
geometry and loading conditions, then the crack growth rate behavior observed by the two cracks 
should be the same for that time period.  This hypothesis is a direct extension of Equation 2.2.3 
to the problem of sub-critical crack growth.  The equation representing the sub-critical crack 
growth hypothesis is simply: 
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That is, a material’s rate of crack growth is a function of the stress intensity factor.  The stress 
intensity factor is shown to explicitly depend on time in order to indicate the influence of its 
waveform on the crack growth rate.  The value of the hypothesis stated by Equation 2.2.6 is that 
the material behavior can be characterized in the laboratory and then utilized to solve structural 
cracking problems when the structure’s loading conditions match the laboratory loading 
conditions.  A general description of the procedure utilized will be presented in Section 2.5.  
Section 5 is devoted to a complete description of the detailed methodology available to a 
designer for estimating the crack growth life of a structural component using a material’s crack 
growth rate properties.   

A verification of Paris’ Hypothesis was first conducted using fatigue crack growth data 
generated under constant amplitude type repeated loading.  The parameters that pertain to 
constant amplitude type loading are presented in Figure 2.2.6.  Figure 2.2.6a describes a 
repeating constant amplitude cycle with a maximum stress of σmax, a minimum stress of σmin, and 
a stress range of ∆σ.  The stress ratio (R) is given by the ratio of the minimum stress to the 
maximum stress.  In describing constant amplitude stress histories, it is only necessary to define 
two of the above four parameters; typically ∆σ and R or σmax and R are used.  A stress history is 
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converted into a stress-intensity factor history by multiplying the stresses by the stress-intensity-
factor coefficient (K/σ).  As can be noted from the figure, the coefficient is evaluated at the 
current crack length ai and the stress-intensity-factor history is shown to be a repeating cyclic 
history in Figure 2.2.6b.  The terms Kmax, Kmin and ∆K define the maximum, the minimum and 
range of stress-intensity factor, respectively.  Strictly speaking, the stress-intensity factor history 
given in Figure 2.2.6b should not be shown constant but reflective of the changes in the stress-
intensity-factor coefficient as the crack grows.  For small changes in crack length, however, the 
stress-intensity factor coefficient does not change much, so the portrayal in Figure 2.2.6b is 
reasonably accurate for the number of cycles shown. 

 

 

Figure 2.2.6.  Parameters that Define Constant Amplitude Load Histories for Fatigue Crack 
Growth.  The Figure also Illustrates the Transformation between Stress History Loading and 

Stress-Intensity-Factor Loading at One Crack Length Position 

The fatigue crack growth rate behaviors exhibited by a plate structure subjected to two extreme 
loading conditions (but at the same nominal stress level) are compared in Figure 2.2.7 
[Donaldson & Anderson, 1961; Anderson & James, 1970].  These loading conditions are referred 
to as wedge loading and remote loading.  In the remote loaded structure, the rate of crack length 
change accelerates as the crack grows.  An opposite growth rate behavior is exhibited by the 
wedge loaded structure.  These two extreme loading conditions provide a good test for the 
application of the fracture mechanics approach to the study of fatigue crack growth rates.  If the 
approach can be used to describe these opposite growth rate behaviors, then it should be 
generally applicable to any other type of structure or loading. 
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Figure 2.2.7.  Description of Crack Growth Behavior Observed for Two Very Different 

Structural Geometries 

Paris, et al. [1961], suggested that the appropriate stress intensity parameter for fatigue crack 
propagation should be the difference between the maximum and minimum stress-intensity 
factors in a cycle of fatigue loading.  This difference in the stress-intensity factors is the stress 
intensity range (∆K) and it measures the alternating intensity of the crack tip stress field 
responsible for inducing reversed plastic deformation.  The stress-intensity range as a function of 
crack length is obtained from the static stress-intensity-factor formulas where the range in stress 
(load) replaces the static stress (load).  Section 2.5 provides a more extensive description of the 
calculation procedures for stress-intensity-factor parameters that are used to describe sub-critical 
crack growth.   

Approximate expressions for the small crack in a wide plate are shown in Figure 2.2.7.  The 
reader will note that the stress-intensity factor for the remotely loaded wide plate increases with 
crack length while just the reverse is observed to occur for the wedge loaded wide plate. 

Drawing tangents to the cyclic crack length curves given in Figure 2.2.7 provides estimates of 

the cyclic (fatigue) crack growth rates at various crack lengths 
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corresponding stress-intensity ranges for these same crack lengths provides the data plotted in 
Figure 2.2.8 [Donaldson & Anderson, 1961; Anderson & James, 1970].  Note that at the same 
stress-intensity range (∆K), the same crack growth rate (da/dN) is observed, even though both the 
form of the stress-intensity equations and the cycle-crack length curves are very different. 
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Figure 2.2.8.  Comparison of Crack Growth Rate Results for the Two Structural Geometries.  

The Coincidence of the Data Shows that the Hypothesis of Equation 2.2.6 is Correct 

The general fatigue cracking behavior pattern exhibited by most structural materials is shown in 
Figure 2.2.9.  The shape of the curve is sigmoidal with no crack growth being observed below a 
given threshold level of stress-intensity range and rapid crack propagation occurring when the 
maximum stress-intensity-factor in the fatigue cycle approaches the fracture toughness of the 
material.  In the sub-critical growth region, numerous investigators have indicated that the rate of 
cyclic growth (da/dN) can be described using a power law relation 

( )pKC
dN
da ∆=  (2.2.7)

where C and p are experimentally developed constants.  Fatigue crack propagation data of the 
type shown in Figure 2.2.9 can be conveniently collected using the conventional specimen 
geometries where load is controlled and the crack length is measured optically (20x) as a 
function of applied cycles.  The details of the methodology employed to generate such curves are 
covered in Section 7. 

 

2.2.11 



 
Figure 2.2.9.  Schematic Illustration of the Fatigue Crack Growth Rate as a Function of Stress 

Intensity Range 

The application of sub-critical crack growth curves to the design of a potentially cracked 
structure only requires that the differentiation process be reversed.  In other words, given crack 
growth rate data of the type shown in Figure 2.2.9, the designer integrates the crack growth rate 
as a function of the stress-intensity factor for the structure through the crack growth interval of 
interest. 

Other investigations have demonstrated that sub-critical crack growth processes that result from 
variable amplitude loading, stress corrosion cracking, hydrogen embrittlement and liquid metal 
embrittlement can in general be described using Equation 2.2.6.  The sub-critical cracking of 
structural materials has been successfully modeled with fracture mechanics tools primarily 
because the plastic deformation processes accompanying cracks are localized and thereby 
controlled by the surrounding stress field.  As suspected, the magnitude in the elastic crack tip 
stress field is found to correlate well with the rate of sub-critical crack advance. 

2.2.6 Alternate Fracture Mechanics Analysis Methods 
In the other subsections of Section 2, the emphasis has been on developments of linear elastic 
fracture mechanics (LEFM) specifically based on the crack tip characterizing parameter K, the 
stress-intensity factor.  This parameter has provided the major damage tolerance design tool for 
aerospace engineers since the early sixties.  It was discovered and justified for its universal 
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capability for describing the magnitude of the crack tip stress field by Irwin [1957; 1960] and 
Williams [1957].  Irwin discovered this relationship through his studies of the energy balance 
equation associated with fracture.  Prior to 1957, fracture research concentrated on extending the 
original energy balance equation given by Griffith [1921]  In 1957, Irwin [1960] linked the 
“driving force”, G, in the energy balance equation to the stress-intensity factor, K, and suggested 
how the stress-intensity factor could be used as the driving force for crack tip behavior.  
Subsequent to Irwin’s initial stress-intensity factor analysis, and as a result of the success of the 
LEFM approach for solving major fracture problems, interest in the energy approach to fracture 
waned.   

In the late sixties, Rice [1968b] published a paper that again heightened the interest in the energy 
approach.  Rice’s specific contribution was to develop an integral, the J-integral, which could be 
used to account for observed non-linear behavior during the fracture process.  This integral also 
has the useful property that it reduces to the elastic “driving force”, G, when the localized plastic 
deformation is well contained by the elastic crack tip stress field.  Because many of the materials 
utilized in aerospace structures have exhibited typical LEFM behavior, aerospace engineers have 
not assumed a leadership role in the development of the J-integral technology. 

Engineers interested in the damage tolerance analysis of more ductile pressure vessels and 
welded steel structures have provided the major developments here.  Aerospace applications are 
being recognized each day, however, for this technology, e.g., residual strength analysis of tough 
materials and sub-critical crack growth behavior of aircraft gas turbine engine structures. 

Another analysis approach for characterizing the level of the local stress-strain behavior at the tip 
of a crack was initiated in Britain in the early sixties.  Wells [1961] suggested that the localized 
behavior at the tip of the crack was controlled by the amount of crack opening, which was 
referred to as the crack opening displacement, COD.  The value of the technology built on the 
COD concept, like that of the J-Integral technology, is that it allows for the coupling of the 
LEFM analysis and its results to the solution of problems in which the behavior approaches 
unconstrained yielding. 

The subsections below further describe the analysis methodologies based on the three fracture 
mechanics parameters: the strain energy release rate (driving force - G), the J-Integral (J), and 
the crack opening displacement (COD), respectively.  Each subsection outlines the analytical 
basis for the parameter and provides the principal equations that tie the parameter to the LEFM 
parameter K.  Further information on these parameters can be obtained by the references cited in 
the text. 

2.2.6.1 Strain Energy Release Rate 

Paris [1960] gave one of the better descriptions of the fracture energy balance equation 
associated with the stability of a cracking process in a set of notes prepared for a short course 
given to the Boeing Company in 1960.  Paris simply described the process of determining if a 
crack would extend as a comparison between the Rate of Energy Input and the Rate at which 
Energy was absorbed or dissipated.  This comparison is similar to performing as analysis based 
on the Principle of virtual work.  In equation form, Paris indicated 
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 Rate of Energy 
Input, G 
(to drive crack) 

Rate of Energy 
Dissipated, R 
(as crack moves)

 
 

(2.2.8)

where the left hand side of Equation 2.2.8 represents the input rate (as a function of crack area A) 
and the right hand side represents the dissipation rate.  If the input rate, the driving force G, is 
equal to the dissipation rate, the resistance R, then the crack is in an equilibrium (stable) position, 
i.e., it is ready to grow but doesn’t.  If the driving force exceeds the resistance, then the crack 
grows, an unstable position.  Since a crack will not heal itself, if the resistance is greater than the 
driving force, then the crack is also stable. 

The basis for Equation 2.2.8 was further described [Paris, 1960] so that the components are 
identified as: 
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where < and = imply stability while > implies instability. 

The driving force (input work rate, G) components are: 

 
dA
dX  = the work done by external forces on the body unit increase in crack area, dA. 

 
dA
dG  = the elastic strain energy released per unit increase in dA. 

And the resistance (rate of dissipation, R) components are: 

 
dA
dS  = surface energy absorbed in creating a new surface area, dA. 

 
dA
dQ  = plastic work dissipated throughout the body during an increase in surface area, dA. 

While Equation 2.2.9 is most general and covers fractures that initiate in either brittle or ductile 
materials, it is not always possible to estimate the individual component terms.  For linear elastic 
materials, the terms can be estimated; and in fact, this was accomplished by Griffith [1921] forty 
years before Paris presented the above general work rate analysis in 1960.  Before any further 
discussion of the work preceeding that of Paris, however, several additional points need to be 
made about Equation 2.2.9.  First, the component terms of the input energy rate will be defined 
relative to a specific structural geometry and loading configuration: the uniaxially loaded, center 
cracked panel shown in Figure 2.2.10.  Then the input energy rate (G) will be related to the 
elastic strain energy. 
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Figure 2.2.10.  Finite Width, Center Cracked Panel, Loaded in Tension with Load P 

The two components of the energy input rate (G) are given by 

dA
PdL

dA
dX

=  (2.2.10)

the boundary force per increment of crack extension; and by 

dA
dV

dA
dG −

=  (2.2.11)

the decrease in the total elastic strain energy of the plate.  With these additional definitions, it can 
be seen that G is equal to the negative of the rate of change in the potential energy of 
deformation (Uσ), i.e., 

dA
dUG σ−

=  (2.2.12)

 

2.2.6.1.1 The Griffith-Irwin Energy Balance 

The earliest analysis along the above lines was conducted by Griffith [1921] in 1920.  Griffith 
used the crack geometry and loading configuration shown in Figure 2.2.11 and assumed that the 
stress would be constant during any incremental growth of the crack.  Griffith also neglected the 
plastic work term in Equation 2.2.9 since he was trying to test his fracture hypothesis with a 
brittle material, glass.  Griffith’s analysis showed that the input work rate (G) was equal to the 
negative of the derivative of potential energy of deformation (Uσ ) as shown by Equation 2.2.12, 
and the resistance (R) was equal to the rate of increase in potential energy due to surface energy 
(UT ) during crack extension: 

dA
dU

dA
dSR T==  (2.2.13)
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Figure 2.2.11.  Griffith Crack and Loading Configuration, Uniformly Loaded, Infinite Plate with 

a Center Crack of Length 2a 

The potential energy of deformation (Uσ ) was found to be 

E
BaU

22πσ
σ =  (2.2.14)

while the potential energy due to surface tension (UT) was given by 

aTBUT 4=  (2.2.15)
with surface tension T, and for plate thickness B. 

The crack area A is given by 

aBA 2=  (2.2.16)
So the energy balance equation becomes 

R
dA
dST

'E
a

dA
dUG ====

−
= 2

2πσ  (2.2.17)

where E′ is dependent on the stress state in the following way 

E / (1-ν2), for plane strain E′ = 
E, for plane stress 

(2.2.18)

 

Solving Equation 2.2.17 for the critical stress (σcr) associated with the point at which the crack 
(a) would grow, one finds 
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Later, Irwin [1948] and Orowan [1949] incorporated the effects of crack tip plasticity into the 
analysis by taking the plastic dissipation term in Equation 2.2.9 as a constant, i.e. they assumed 
that 

q
dA
dQ

=  (2.2.20)

so that the resistance in Equation 2.2.17 was defined as the combination of surface energy 
absorbed and plastic work dissipated.  Thus, the Griffith-Irwin-Orowan energy balance equation 
became 

RqT
E

aG =+== 2
'

2πσ  (2.2.21)

and the critical stress was 

a
'E)aT(

cr π
σ +

=
2  (2.2.22)

Both Irwin and Orowan noted that the plastic dissipation rate for metals was at least a factor of 
1000 greater than the surface energy absorption rate so that Equation 2.2.22 could be 
approximated by 

a
'qE

cr π
σ =  (2.2.23)

Irwin also noted that the driving force or input energy rate G was directly related to the square of 
the magnitude of the crack tip stress field for the Griffith center crack geometry (Figure 2.2.11), 
i.e., that 

'E
K

'E
aG

22
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πσ  (2.2.24)

Later, Irwin [1960] reported this result to be general for any cracked elastic body based upon a 
virtual work analysis of the stresses and displacements associated with crack tip behavior during 
an infinitesimal crack extension. 

2.2.6.1.2 The Relationship between G, Compliance, and Elastic Strain Energy 

 If one defines the relationship between the force (P) applied to the structure shown in 
Figure 2.2.10 and the deformation it induces in the direction of load as 

∆L = C ⋅ P (2.2.25)
where 

C = C(A) (2.2.25a)
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is the compliance, the inverse structural stiffness, which varies as a function of crack length 
(area).  With the definitions given by Equation 2.2.25, the elastic strain energy (V) can be written 
as 

22

2CPL.PV ==
∆  (2.2.26)

The change in V simultaneous to dA and dP is 
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which leads to 
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 (2.2.28)

Similar operations on changes in dL (=d(∆L)) lead to 

PCdPdA
A
CPPdL +
∂
∂

= 2  (2.2.29)

So that the input energy rate (G) based on Equation 2.2.9 becomes 
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 (2.2.30)

Showing that the input energy rate is independent of the variation of force during any 
incremental crack extension.  Thus, Equation 2.2.30 reduces to 
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∂
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≡
∂
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=
2

2

 (2.2.31)

Equation 2.2.31 provides the basis for experimentally evaluating the crack driving force using 
compliance measurements and clearly shows that the rate of energy input is identically equal to 
the change in elastic strain energy considering the loading force constant.  When one conducts a 
similar analysis with the displacement (∆) and crack area (A) as independent variables, one finds 
that 

ttanconsL
A
VG =
∂
∂

−= ∆  (2.2.32)

which means that the input energy rate is the negative of the areal derivative of elastic strain 
energy considering the displacement constant during crack extension.  This is the so-called fixed 
displacement condition.  The term strain energy release rate was assigned to G, the input energy 
rate, when it was realized that for cracked elastic bodies Equation 2.2.30 and 2.2.31 were 
generally applicable. 

Figure 2.2.12 describes the change in elastic strain energy that occurs when a crack grows under 
fixed load and fixed displacement conditions.  It can be noted that the difference between the 

change in elastic strain energy for the two cases is the infinitesimal area LdP ∆∗
2
1 , shown cross-
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hatched in Figure 2.2.12a.  For the case of the fixed load condition (Figure 2.2.12a), the elastic 
strain energy is seen to increase as the crack grows; the gain in elastic strain energy is greater 
than the indicated loss (by a factor of 2).  For the case of the fixed displacement condition 
(Figure 2.2.12b), the elastic strain energy is seen to decrease as the crack grows; only a loss is 
indicated. 

 

 

Figure 2.2.12.  Load-Displacement Diagrams for the Structure Illustrated in Figure 2.2.10.  The 
Diagram Shows the Changes that Occur in the Elastic Strain Energy as a Crack Grows Under the 

Two Defined Conditions 

Some important observations presented in the subsection are:  

(a) the general form of Equation 2.2.24 can be utilized to relate G and K;  

(b) G is equal to the negative rate of change in the potential energy of deformation 
(Equation 2.2.12); and  

(c) G is related to the areal rate of change in compliance (Equation 2.2.31).   

Note that by combining Equations 2.2.24 and 2.2.12 or 2.2.31 the analyst and/or experimentalist 
have energy-based methods for obtaining estimates of the stress-intensity factor.  These 
combinations are discussed in Section 11.2.1.4 (see, for example, Equation 11.2.25). 

2.2.6.2 The J-Integral 

In 1968, Rice [1968b] published a paper describing a path independent integral (J) which was 
noted to be equal to the negative of the change in potential energy of deformation occurring 
during the infinitesimal growth of a crack in a nonlinear elastic material, i.e. he showed that 

A
UJ
∂
∂

−= σ  (2.2.33)

Rice’s path independent integral J was defined by [Rice, 1968a; 1968b] 
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uTWdyJ  (2.2.34)

where Γ is any contour surrounding the crack tip, traversing in a counter clockwise direction (see 
Figure 2.2.13), W is the strain energy density, Γ  is the traction on Γ, and u  is the displacement 
on an element along arc s. 

 

 

Figure 2.2.13.  J-Integral Parameters Illustrated 

Before elaborating on a detailed description of the parameters involved in the calculation of the 
J-Integral, it is useful to note that Equation 2.2.33 is the nonlinear elastic equivalent of Equation 
2.2.12.  Thus, for linear elastic materials, J reduces to the value of the strain energy release rate, 
G, i.e. 

J = G (2.2.35)
and the J-integral is related to the stress-intensity factor through the expression 

'E
KJ

2

=  (2.2.36)

where E′ is given by Equation 2.2.18. 

Equations 2.2.35 and 2.2.36 are noted to be valid only when the material is behaving in a linear 
elastic fashion.  When values of the J-Integral are determined via Equation 2.2.34 using finite 
element methods applied to linear elastic cracked structures, Equation 2.2.36 provides the 
engineer with a simple energy-based method for obtaining stress-intensity factors as a function 
of crack length. 
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In the first subsection below, the calculations associated with developing the J-Integral for an 
elastic-plastic material are detailed.  In the second subsection, some engineering approximation 
methods for calculating the J-Integral are outlined. 

2.2.6.2.1 J-Integral Calculations 

This subsection outlines the calculation of parameters involved in the J-Integral.  Consideration 
is given to W, u ,T , and Γ as well as the choice of material stress-strain behavior. 

The strain energy density W in Equation 2.2.34 is given by 

[ ]zzzzyzyzyyyyxzxzxyxyxxxx ddddddW εσγσεσγσγσεσ +++++∫= (2.2.37)
and for generalized plane stress 

[ ]yyyyxyxyxxxx dddW εσγσεσ ++∫=  (2.2.38)
 

In Equation 2.2.34, the second integral involves the scalar product of the traction stress vector 

  T  and the vector 
x
u 
∂
∂  whose components are the rate of change of displacement with respect to 

x.  The traction vector is given by 
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and the displacement rate vector is given by 
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where u and v are the displacements in the x and y directions, respectively. 

Typically, when evaluating the J-Integral value via computer, rectangular paths such as the one 
illustrated in Figure 2.2.14 are chosen.  Noted on Figure 2.2.14 are the values of the outward unit 
normal components and the ds path segment for the four straightline segments.  For loading 
symmetry about the crack axis (x-axis), the results of the integration on paths 0-1, 1-2 and 2-3 
are equal to the integrations on paths 6-7, 5-6 and 4-5, respectively.  Thus, for such loading 
symmetry, one can write 
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2.2.21 



 

Figure 2.2.14.  Rectangular Path for J Calculation 

For paths of the type shown in Figure 2.2.14, the J-Integral can be evaluated by the integrations 
indicated in Equation 2.2.41.  The strain energy density W, appearing in Equation 2.2.41, is given 
by Equation 2.2.37, or by Equation 2.2.38 for plane stress conditions.  To integrate according to 
Equations 2.2.37 or 2.2.38, a relationship between stresses and strains is required.  For material 
exhibiting plastic deformations, the Prandtl-Reuss equations provide a satisfactory relationship.  
For the case of plane stress, when the Prandtl-Reuss relations are introduced into Equation 
2.2.38, Equation 2.2.38 becomes 

[ ] [ ] pyyxyxyyyxx d
EE

W εσσσσυσσ ∫+−
−

++= 22 )1(
2
1

(2.2.42)

where σ and pε  are the equivalent stress and equivalent plastic strain, respectively.  The strain 
energy density will have a unique value only if unloading is not permitted.  If loading into the 
plastic range followed by unloading is permitted, then W becomes multi-valued.  It follows that J 
is also multi-valued for this occurrence. 

The statements made in the preceding paragraph would appear to seriously limit the use of J as a 
fracture criterion since the case of loading into the plastic range followed by unloading (i.e., the 
case for which J is multi-valued) occurs when crack extension takes place.  On the basis of a 
number of examples, Hayes [1970] deduced that monotonic loading conditions prevail 
throughout a cracked body under steadily increasing load applied to the boundaries, provided 
that crack extension does not occur.  Thus, valid J calculations can be performed for this case. 

2.2.6.2.2 Engineering Estimates of J 

While the J-Integral was developed for nonlinear elastic material behavior, it has been 
extensively studies for its direct application to describing elastic-plastic material behavior 
[Begley & Landes, 1972; Verette & Wilhem, et al., 1973; Landes, et al., 1979; Paris, 1980; 
Roberts, 1981].  Its nonlinear elastic foundation has provided engineers with some techniques 
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which allow them to focus on the combination of linear-elastic and plastic-strain hardening 
behavior and then to separate these two components for further study of the plastic behavior.  
The J-Integral for an elastic-plastic material is taken as the sum of two components parts: the 
linear elastic part (Jel) and the plastic-strain hardening part (Jpl), i.e.,  

ll pe JJJ +=  (2.2.43)
which when used in conjunction with Equation 2.2.36 becomes 

lpJ
'E

KJ +=
2

 (2.2.44)

Engineering estimates of J then focus on the development of the plastic-strain hardening part Jpl.  
Recently, Shih and coworkers have published a series of reports and technical papers [Shih & 
Kumar, 1979; Kumar, et al., 1980; Shih, 1976; Kumar, et al., 1981] detailing how the Jpl term 
can be calculated from a series of finite element models that consider changes in material 
properties for the same structural geometry.  The following briefly describes the Shih and 
coworkers method for estimating Jpl. 

First, the material is assumed to behave according to a power hardening constitutive (σ - ε) law 
of the form 

n
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where α is a dimensionless constant, σo = Eεo, and n is the hardening exponent.  For n = 1, the 
material behaves as a linearly elastic material; as n approaches infinity, the material behaves ore 
and more like a perfectly plastic material.  For a generalization of Equation 2.2.45 to multiaxial 
states via the J2 deformation theory of plasticity, Ilyushin [1946] showed that the stress at each 
point in the body varies linearly with a single load such as σ, the remotely applied stress, under 
certain conditions. 

Ilyushin’s analysis allowed Shih and Hutchison [1976] to use the relationship for crack tip 
stresses under contained plasticity, i.e. to use [Hutchinson, 1968; Rice & Rosengren, 1968] 
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and similar equations for σyy, σxy, etc., to relate the crack tip parameters uniquely to the remotely 
applied load.  Note that Jpl term in Equation 2.2.46 acts as a (plastic) stress field magnification 
factor similar to that of the stress-intensity factor in the elastic case.  The form of the relationship 
that Shih and Hutchinson postulated is given by 
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where  is a function only of relative width (a/b) and n.  An alternate form of Equation 2.2.47 
that has been previously used in computer codes [Kumar, et al., 1980; Kumar, et al., 1981; 
Weerasooriya & Gallagher, 1981] is 

Ĵ
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where P is the applied load (per unit thickness), PT
o is the theoretical limit load (per unit 

thickness), f1 is a function only of geometry and crack length, while h1 depends on geometry, 
crack length, and the strain hardening exponent n. Shih and coworkers [Kumar, et al., 1980; 
Kumar, et al., 1981] have tabulated the functions for a number of geometries for conditions of 
plant stress and plane strain.  From the reference tabulated data [also see Weerasooriya & 
Gallagher, 1981], these functions can be obtained by interpolation for any value within the a/b 
and n limits given; thus, the plastic (strain hardening) component of Equation 1.3.44 can be 
computed for any given applied load P from Equation 2.2.48. 
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EXAMPLE 2.2.1 J Estimated for Center Crack Panel 

Figure 2.2.10 describes the geometry for this example wherein the width W is set equal to 2b and 
the load P is expressed per unit thickness.  Using Equation 2.2.44 to describe the relationship 
between the elastic and plastic components, we have 

 plJ
E
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From elastic analysis, the stress-intensity factor is known to be (see section 11): 
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For the strain hardening analysis, Equation 2.2.48 is employed, i.e., we use 
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For a center crack panel, the function f1 is given by [Kumar, et al., 1980; Kumar, et al., 1981] 

 
b

ab
b
af

2
22

1
−

=





  

and the limit load (per unit thickness) is given by either 

 ( )abP o
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o
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for plane strain or by 

 ( )abP
T

o
−= σ2  

for plane stress.  The supporting data for calculating the function h1 is supplied by the following 
tables for plane strain conditions and plane stress conditions.  The other functions (h2 and h3) 
contained in these tables support displacement calculations.  As indicated above, data are 
available for estimating the J-integral according to this approach for a number of additional 
(simple geometries).  See Kumar, et al. [1981] and Weerasooriya & Gallagher [1981] for further 
examples.
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Table of Values of h1, h2, and h3 for the Plane Strain CCP in Tension  
[Shih, 1979; Kumar, et al., 1980; Weerasooriya & Gallagher, 1981] 

a/b  n = 1 n = 2 n = 3 n = 5 n = 7 n = 10 n = 13 n = 16 n = 20 
h1 2.535 3.009 3.212 3.289 3.181 2.915 2.625 2.340 2.028 
h2 2.680 2.989 3.014 2.847 2.610 2.618 1.971 1.712 1.450 

 
1/4 

h3 0.536 0.911 1.217 1.639 1.844 1.554 1.802 1.637 1.426 
h1 2.344 2.616 2.648 2.507 2.281 1.969 1.709 1.457 1.193 
h2 2.347 2.391 2.230 1.876 1.580 1.276 1.065 0.890 0.715 

 
3/8 

h3 0.699 1.059 1.275 1.440 1.396 1.227 1.050 0.888 0.719 
h1 2.206 2.291 2.204 1.968 1.759 1.522 1.323 1.155 0.978 
h2 2.028 1.856 1.600 1.230 1.002 0.799 0.664 0.564 0.466 

 
1/2 

h3 0.803 1.067 1.155 1.101 0.968 0.796 0.665 0.565 0.469 
h1 2.115 1.960 1.763 1.616 1.169 0.863 0.628 0.458 0.300 
h2 1.705 1.322 1.035 0.696 0.524 0.358 0.250 0.178 0.114 

 
5/8 

h3 0.844 0.937 0.879 0.691 0.522 0.361 0.251 0.178 0.115 
h1 2.072 1.732 1.471 1.108 0.895 0.642 0.461 0.337 0.216 
h2 1.345 0.857 0.596 0.361 0.254 0.167 0.114 0.081 0.051 

 
3/4 

h3 0.805 0.700 0.555 0.359 0.254 0.168 0.114 0.081 0.052 
 

Table of Values of h1, h2, and h3 for the Plane Stress CCP in Tension  
[Shih, 1979; Kumar, et al., 1980; Weerasooriya & Gallagher, 1981] 

a/b  n = 1 n = 2 n = 3 n = 5 n = 7 n = 10 n = 13 n = 16 n = 20 
h1 2.544 2.972 3.140 3.195 3.106 2.896 2.647 2.467 2.196 
h2 3.116 3.286 3.304 3.151 2.926 2.595 2.288 2.081 1.814 

 
1/4 

h3 0.611 1.010 1.352 1.830 2.083 2.191 2.122 2.009 1.792 
h1 2.344 2.533 2.515 2.346 2.173 1.953 1.766 1.608 1.431 
h2 2.710 2.621 2.414 2.032 1.753 1.473 1.279 1.134 0.988 

 
3/8 

h3 0.807 1.195 1.427 1.594 1.570 1.425 1.267 1.133 0.994 
h1 2.206 2.195 2.057 1.809 1.632 1.433 1.300 1.174 1.000 
h2 2.342 2.014 1.703 1.299 1.071 0.871 0.757 0.666 0.557 

 
1/2 

h3 0.927 1.186 1.256 1.178 1.040 0.867 0.758 0.668 0.560 
h1 2.115 1.912 1.690 1.407 1.221 1.012 0.853 0.712 0.573 
h2 1.968 1.458 1.126 0.785 0.617 0.474 0.383 0.313 0.256 

 
5/8 

h3 0.975 1.053 0.970 0.763 0.620 0.478 0.386 0.318 0.273 
h1 2.073 1.708 1.458 1.208 1.082 0.956 0.745 0.646 0.532 
h2 1.611 0.970 0.685 0.452 0.361 0.292 0.216 0.183 0.148 

 
3/4 

h3 0.933 0.802 0.642 0.450 0.361 0.292 0.216 0.183 0.149 
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In the application of Equation 2.2.44 to structural material problems, it has been found [Bucci, et 
al., 1972] that better correlation with experimental results is obtained if one uses the plasticity 
enhanced, effective crack length (ae) in plane of the physical crack length (a) in the elastic 
component expressions.  The effective crack length utilized by Bucci, et al. [1972] was based on 
the Irwin plastic zone size correction, i.e. the effective crack length was given by 

ye raa +=  (2.2.52)
where 
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with x = 2 for plane stress and x = 6 for plane strain.  K represents the stress-intensity factor. 

2.2.6.3 Crack Opening Displacement 

The crack opening displacement (COD) parameter was proposed to provide a more physical 
explanation for crack extension processes. [Wells, 1961; Burdekin & Stone, 1966]  The 
philosophy was based on a crack tip strain based model of cracking that would allow for the 
occurrence of elastic-plastic material behavior.  The initial modeling, however, was based on 
elasticity solutions of crack tip displacements.  Equation 2.2.54 describes the x and y 
displacements (u and v, respectively) in the crack tip region of an elastic material: 
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where κ = 3 - 4ν for plane strain and κ = (3 - ν)/(1 + ν) for plane stress, and where G is the shear 
modulus (G = 0.5E/(1 + ν)).  If the angle θ  is chosen to be 180° (π), the displacements are those 
associated with crack sliding (u component) or opening (v component).  Under mode 1 
(symmetrical) loading, the case covered by Equation 1.3.54, the sliding displacement term is 
noted to be identically zero; and all displacement is perpendicular to the crack, i.e. only opening 
is observed.  Based on Equations 2.2.54 and 2.2.18 and the definition of shear modulus (G), the 
displacement of the crack relative to its longitudinal axis (x axis) is 
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 (2.2.55)

The relative movement of the crack faces is the COD and it is twice the value obtained by 
Equation 2.2.55, i.e. 

COD = 2v (2.2.56)
One immediate observation is that COD will vary as a function of position along the crack, and 
that the COD at the crack tip, i.e. at r = 0, is zero.  In the quasi-elastic-plastic analysis performed 
by Wells, the crack was allowed to extend to an effective length (ae), one plastic zone radius 
larger than the physical crack length (a); the crack opening displacement was then determined at 
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the location of the physical crack tip.  Figure 2.2.15 describes the model used to define the crack 
tip opening displacement (CTOD).  The Wells modeling approach leads one to 
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which after some simplification gives the CTOD as 
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Figure 2.2.15.  Description of Model Used to Establish the CTOD Under Elastic Conditions 

 

It is immediately seen that the CTOD is directly related to the stress-intensity factor for elastic 
materials; thus, for elastic materials, fracture criteria based on CTOD are as viable as those based 
on the stress-intensity factor parameter.  The other relationships developed between K and G or J 
in this section allow one to directly relate G and J to the CTOD in the elastic case. 

In the late 1960’s, Dugdale [1960] conducted an elasticity analysis of a crack problem in which a 
zone of yielding was postulated to occur in a strip directly ahead of the crack tip.  The material in 
the strip was assumed to behave in a perfect plastic manner.  The extent of yielding was 
determined such that the singularity at the imaginary crack tip (see Figure 2.2.16) was canceled 
due to the balancing of the remote positive stress-intensity factor with the local yielding negative 
stress-intensity factor.  The Dugdale quasi-elastic-plastic analysis provided an estimate of the 
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relative displacement of the crack surfaces for a center crack (crack length = 2a) in an infinite 
plate subjected to a remote tensile stress (σ) and having a yield strength equal to σo, the CTOD is 
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at the tip of the physical crack tip (a) and the extent of the plasticity ahead of the crack is 
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Figure 2.2.16.  Dugdale Type Strip Yield Zone Analysis 

For the case of small scale yielding, i.e., when 
oσ

σ  is low, the CTOD and extent of plasticity (ω) 

reduce to 
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and 
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It can first be noted that the extent of the plasticity (ω) is only about 20% higher than would be 
predicted using the Irwin estimate of the plastic zone diameter (2ry).  The level of CTOD 
estimated by Equation 2.2.61 also compares favorably with that given by Equation 2.2.58; 
Equation 2.2.61 gives an estimate that is about 30 percent lower than Equation 2.2.58.  
Numerous other studies have shown that the CTOD is related to the stress-intensity factor under 
conditions of small scale yielding through 
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where the constant α ranges from about 1 to 1.5.  Experimental measurements [Bowles, 1970; 
Roberson & Tetelman, 1973] have indicated that α is close to 1.0, although there is substantial 
disagreement about the location where CTOD should be measured. 

One difficulty with elastic analyses is that the crack actually remains stationary and thus one 
must reposition the crack through a quasi-static crack extension so that the CTOD for the actual 
crack can be assessed.  During loading, cracks in ductile materials tend to extend through a slow 
tearing mode of cracking prior to reaching the fracture load level.  In these cases, the amount of 
opening that occurs at the initial crack tip represents one measure of the crack tip strain; but, this 
parameter depends not only on load, initial crack length and material properties, it also depends 
on the amount of crack extension from the initial crack tip.  Rice and co-workers [Rice, 1968b; 
Rice & Tracey, 1973] attempted to provide an alternate choice of locating the position where 
CTOD would be measured.  They found that when the CTOD was determined for the position 
shown in Figure 2.2.17, the CTOD and J integral were related (for ideally plastic materials) by 

o
n

JdCTOD
σ

=  (2.2.64)

For the case of plane stress behavior, dn is unity and for plane strain behavior, dn is about 0.78. 

 

 
Figure 2.2.17.  Definition of the Crack Tip Opening Displacement (CTOD) 

2.2.30 



2.2.31 

For strain hardening materials controlled by Equation 2.2.45, Shih and co-workers [Shih & 
Kumar, 1979; Shih, 1979] have shown that Equation 2.2.64 relates J and CTOD if the constant 
dn is replaced with a function that is strongly dependent on the strain hardening exponent and 
mildly dependent on the ratio σo/E.  Thus, there is a direct relationship between CTOD and J 
throughout the region of applicability of the J-Integral and CTOD can likewise be considered a 
measure of the magnitude of the crack tip stress-strain field. 

 
 


